Lithium battery Notice of  rechargeable lithium polymer batteries lithium ion battery packs and LiFePo4 battery packs.

Lithium-ion battery technology has some news from time to time, mostly for safety Problem. But engineers who understand how lithium batteries work know that it’s among the best and safest commercial options for electronics and energy storage needs. So despite exploding cellphones, smoldering plane engines and ebikes that are too hot to ride, lithium-ion batteries remain the go-to energy storage technology worldwide and account for 83 percent of newly announced energy storage projects in 2016, according to a new report by Navigant Research.

lithium polymer battery LP103450 2000mAh 3.7v with PCM protection circut

lithium polymer battery LP103450 2000mAh 3.7v with PCM protection circut

 

Safety is a full-fledged design feature with lithium-ion batteries, and for good reason. As we’ve all seen, the chemistry and energy density that allows lithium-ion batteries to work so well also makes them flammable, so when the batteries malfunction they often make a spectacular and dangerous mess.

COREMAX TECHNOLOGY prides itself for offering lithium-ion batteries designed around safety and longevity.

Although The lithium iron phosphate (LiFePO4) batteries we sell can’t currently be manufactured small enough for use in consumer electronics, the LiFePO4 technology is by far the safest chemistry available.

All COREMAX TECHNOLOGY batteries also come with either a Power Control Module (PCM) or Battery Management System (BMS) that have many extra safety features including; over-current, over-voltage, under-voltage and over-temperature protection and the cells come in an explosion-proof stainless steel casing.

But when it comes to smaller lithium batteries that power common consumer products, we admit the industry as a whole still has room to improve. And researchers know this, which means many groups around the world are finding new and inventive ways to beef up battery safety while improving battery efficiency.

Before we dive into three research projects that are improving battery safety, let’s refresh ourselves on how lithium battery malfunctions happen in the first place.

 

How can lithium batteries catch on fire or explode?

 

Lithium-ion batteries explode when battery’s full charge is released instantly, or when the liquid chemicals mix with foreign contaminants and ignite. This typically happens in three ways: physical damage, overcharging or electrolyte breakdown.

For example, if the internal separator or charging-circuitry is damaged or malfunctions, then there are no safety barriers to keep the electrolytes from merging and causing an explosive chemical reaction, which then ruptures the battery packaging, combines the chemical slurry with oxygen and instantly ignites all of the components.

There are a few other ways lithium batteries can explode or catch on fire, but thermal runaway scenarios like these are the most common. Common is a relative term though, because lithium-ion batteries power most rechargeable products on the market, and it’s pretty rare for large-scale recalls or safety scares to happen.

Why LiFePO4 is Safe

As for the batteries COREMAX TECHNOLOGY uses, our lithium iron phosphate (LiFePO4) chemistry is inherently safe, so you don’t to worry about a battery meltdown.

Here’s why.

LiFePO4 batteries have a chemical and mechanical structure that does not overheat to unsafe levels, unlike batteries made with a cobalt-oxide cathode or manganese-oxide cathode.

This is because the charged and uncharged states of LiFePO4 are physically similar and highly robust, which lets the ions remain stable during the oxygen flux that happens alongside charge cycles or possible malfunctions. Overall, the iron phosphate-oxide bond is stronger than the cobalt-oxide bond, so when the battery is overcharged or subject to physical damage then the phosphate-oxide bond remains structurally stable; whereas in other lithium chemistries the bonds begin breaking down and releasing excessive heat, which eventually leads to thermal runaway.

LiFePO4 works great for our customers’ needs. But the chemistry doesn’t work as efficiently in batteries used in small electronics. The industry needs a different solution. And we might find it if the following three research projects pan out.

Self-healing lithium battery

Self-healing membranes have been all-the-rage for wearable technology, and now the research is being adapted for batteries. A self-healing lithium-ion battery has unique chemical structures that prevent lithium compounds from leaking out after the device has been damaged. Plus the batteries maintain their electrochemical functionality after healing. This should halt any messy explosions or fires upon the battery receiving physical damage and make batteries more resilient.

Although the self-healing battery concept still needs further research and refinement, a partnership between Samsung and researchers at Fudan University in Shanghai has produced among the most promising self-healing battery designs.

Their batteries are composed of carbon nanotubes that are loaded with lithium nanoparticles and fixed onto a self-healing polymer, according to an article in Chemistry World.

Within the self-healing polymer is a cellulose-based gel that acts as an electrolyte and separation membrane between the electrodes. This lets the battery self-repair if it’s damaged by simply pressing the two maimed sections together for a few seconds.

Solid-state Lithium-ion Battery

Lithium-ion batteries aren’t alone in the occasional safety snafu (without proper battery maintenance, lead acid batteries can ignite too), but the results of a chemical breakdown in non-LiFePO4 batteries are often dramatic because the lithium slurry has highly-combustible electrolytes. The simplest solution to this quandary is removing the liquid electrolyte from the equation.  No flammable electrolytes, then no fire or explosions. And that’s exactly the approach some researchers are taking.

Several different research groups are experimenting with solid-state lithium batteries. By eliminating the liquid component and replacing it with a solid-state conductor, the resulting batteries could be more resilient and last longer. Plus the solid polymer opens the door to combining lithium batteries with thin-film fabrication to power miniaturized products and applications.

Progress in this innovation is slow moving because most solids that also conduct ions don’t do so very effectively at room temperatures. Theoretically, chemists and engineers could create a solid electrolyte from any element, but the reality is that only a few options have shown promise. Of those, oxides and sulfides produce the best results.

Because of how volatile and toxic sulfides could be under the wrong circumstances, oxides are the preferred element to work with. And one particular oxide, a garnet-type compound known as cubic Li7La3Zr2O12 or c-LLZO, draws most of the attention because combines several useful qualities, according to an article in Chemical & Engineering News.

The c-LLZO is thermally and chemically stable. It doesn’t need a special processing environment, and it won’t emit any toxic byproducts like sulfur can. Plus the c-LLZO has a wider voltage range than common liquid electrolytes, which means that compound should be suitable for high-voltage batteries.

The downside so far from c-LLZO is the material only has a room temperature conductivity of 1-2 mS/cm, which is low compared to some electrolyte slurries but much greater than other oxides.

The Chemical & Engineering report says researchers are working to boost the conductivity value to make the product more market feasible.

Improved Charging Control Technology 

When it comes to lithium-ion car batteries, safety is the most important feature — with average distance-per charge being a close second. Tesla and Nissan are the two heavyweights in the electric car market, but Toyota says its researchers have solved the company’s safety concerns and they’re now moving forward with an all-electric Prius. The solution to their battery safety woes is improved control technology that accurately measures the temperature and operating condition of every cell in its new battery pack.

The control system can continuously measures how the battery cells are performing, and immediately acts on even slight signs of a potential short-circuit in individual cells. If the cells begin short circuiting or overheating, then the control system will either prevent the malfunction from spreading or shut down the entire battery.

Using this method makes the control system offer proactive protection instead of reactive protection, which can prevent any malfunctions from getting out of control.

These technologies are still a ways off from being market viable, and the entire COREMAX TECHNOLOGY Battery team is dedicated to providing our customers with the highest quality and safest lithium products currently available. Please get in touch with us to learn about how we can help your team achieve its energy needs in a safe and efficient way.

 

 

 

 

! Danger

  • Strictly prohibits heat or throw cell into fire.
  • Strictly prohibits throw and wet cell in liquid such as water、gasoline or drink etc.
  • Strictly prohibits use leave cell close to fire or inside of a car where temperature may be above 60℃. Also do not charge / discharge in such conditions.
  • Strictly prohibits put batteries in your pockets or a bag together with metal objects such as necklaces. Hairpins, coins, or screws. Do not store or transportation batteries with such objects.
  • Strictly prohibits short circuit the (+) and (-) terminals with other metals.
  • Do not place Cell in a device with the (+) and (-) in the wrong way around.
  • Strictly prohibits pierce Cell with a sharp object such as a needle.
  • Strictly prohibits disassemble or modify the c

 

! Warning

  • Strictly prohibits put cell into a microwave oven, dryer, or high-pressure container.
  • Strictly prohibits use cell with dry cells and other primary batteries, or new and old battery or batteries of a different package, type, or brand.
  • Stop charging the Cell if charging is not completed within the specified time.
  • Stop using the Cell if abnormal heat, odor, discoloration, deformation or abnormal condition is detected during use, charge, or storage.
  • Keep away from fire immediately when leakage or foul odor is detected.
  • If liquid leaks onto your skin or clothes, wash well with fresh water immediately.
  • If liquid leaking from the Cell gets into your eyes, do not rub your eyes. Wash them well with clean edible oil and go to see a doctor immediately.

! Caution

  • Before using the Cell, be sure to read the user’s manual and cautions on handling thoroughly.
  • Charging with specific charger according to product specification. Charge with CC/CV Strictly prohibits revered charging. Connect cell reverse will not charge the cell. At the same time, it will reduce the charge-discharge characteristics and safety characteristics, this will lead to product heat and leakage.
  • Store batteries out of reach of children so that they are not accidentally swallowed.
  • If younger children use the Cell, their guardians should explain the proper handling.
  • Before using the Cell, be sure to read the user’s manual and cautions on handling thoroughly.
  • Batteries have life cycles. If the time that the Cell powers equipment becomes much shorter than usual, the Cell life is at an end. Replace the Cell with a new same one.
  • When not using Cell for an extended period, remove it from the equipment and store in a place with low humidity and low temperature.
  • While the Cell pack is charged, used and stored, keep it away from objects or materials with static electric charges.
  • If the terminals of the Cell become dirty, wipe with a dry cloth before using the Cell.
  • Storage the cells in storage temperature range as the specifications, after full discharged, we suggest that charging to 3.9~4.0V with no using for a long time.
  • Do not exceed these ranges of the following temperature ranges.

Charge temperature range : 0℃ to 45℃;    Discharge temperature range : -20℃ to 60℃.(When using equipment)

 

Statement

If our specifications material, product process or product control system has changed, the information will be transmitted to consumer by way of written with quality and reliability data.